library(stats)
n <- nrow(mtcars)
index = sample(1:n, size = round(0.75*n), replace = FALSE)
train = mtcars[index, ]
test = mtcars[-index, ]
paste("Observations in training data: ", nrow(train), sep = "")
## [1] "Observations in training data: 24"
paste("Observations in …
library(stats)
set.seed(90)
n <- nrow(CO2)
index = sample(1:n, size = round(0.75*n), replace = FALSE)
train = CO2[index, ]
test = CO2[-index, ]
class(CO2$Treatment)
## [1] "factor"
log_mod_train <- glm(Treatment …
library(caret)
n <- nrow(iris)
index = sample(1:n, size = round(0.75*n), replace = FALSE)
train = iris[index, ]
test = iris[-index, ]
paste("Observations in training data: ", nrow(train), sep = "")
## [1] "Observations in training data: 112"
paste("Observations …
library(olsrr)
library(MASS) # stepAIC function
mod_forward <- lm(mpg ~ ., data = mtcars)
step_forward <- ols_step_forward(mod_forward)
## We are selecting variables based on p value...
## 1 variable(s) added....
## 1 variable(s) added...
## 1 variable(s) added...
## No more variables satisfy the condition …